Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Fa Yi Xue Za Zhi ; 40(1): 59-63, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500462

ABSTRACT

Important forensic diagnostic indicators of sudden death in coronary atherosclerotic heart disease, such as acute or chronic myocardial ischemic changes, sometimes make it difficult to locate the ischemic site due to the short death process, the lack of tissue reaction time. In some cases, the deceased died of sudden death on the first-episode, resulting in difficulty for medical examiners to make an accurate diagnosis. However, clinical studies on coronary instability plaque revealed the key role of coronary spasm and thrombosis caused by their lesions in sudden coronary death process. This paper mainly summarizes the pathological characteristics of unstable coronary plaque based on clinical medical research, including plaque rupture, plaque erosion and calcified nodules, as well as the influencing factors leading to plaque instability, and briefly describes the research progress and technique of the atherosclerotic plaques, in order to improve the study on the mechanism of sudden coronary death and improve the accuracy of the forensic diagnosis of sudden coronary death by diagnosing different pathologic states of coronary atherosclerotic plaques.


Subject(s)
Coronary Artery Disease , Coronary Thrombosis , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/pathology , Coronary Thrombosis/complications , Coronary Thrombosis/pathology , Risk Factors , Coronary Artery Disease/complications , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/pathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology
2.
Int J Legal Med ; 138(1): 197-206, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37804331

ABSTRACT

Given that combination with multiple biomarkers may well raise the predictive value of wound age, it appears critically essential to identify new features under the limited cost. For this purpose, the present study explored whether the gene expression ratios provide unique time information as an additional indicator for wound age estimation not requiring the detection of new biomarkers and allowing full use of the available data. The expression levels of four wound-healing genes (Arid5a, Ier3, Stom, and Lcp1) were detected by real-time polymerase chain reaction, and a total of six expression ratios were calculated among these four genes. The results showed that the expression levels of four genes and six ratios of expression changed time-dependent during wound repair. The six expression ratios provided additional temporal information, distinct from the four genes analyzed separately by principal component analysis. The overall performance metrics for cross-validation and external validation of four typical prediction models were improved when six ratios of expression were added as additional input variables. Overall, expression ratios among genes provide temporal information and have excellent potential as predictive markers for wound age estimation. Combining the expression levels of genes with ratio-expression of genes may allow for more accurate estimates of the time of injury.


Subject(s)
Contusions , Rats , Animals , Humans , Rats, Sprague-Dawley , Contusions/genetics , Contusions/metabolism , Muscle, Skeletal/metabolism , Wound Healing/genetics , Biomarkers/metabolism
3.
Fa Yi Xue Za Zhi ; 39(2): 115-120, 2023 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-37277373

ABSTRACT

OBJECTIVES: To estimate postmortem interval (PMI) by analyzing the protein changes in skeletal muscle tissues with the protein chip technology combined with multivariate analysis methods. METHODS: Rats were sacrificed for cervical dislocation and placed at 16 ℃. Water-soluble proteins in skeletal muscles were extracted at 10 time points (0 d, 1 d, 2 d, 3 d, 4 d, 5 d, 6 d, 7 d, 8 d and 9 d) after death. Protein expression profile data with relative molecular mass of 14 000-230 000 were obtained. Principal component analysis (PCA) and orthogonal partial least squares (OPLS) were used for data analysis. Fisher discriminant model and back propagation (BP) neural network model were constructed to classify and preliminarily estimate the PMI. In addition, the protein expression profiles data of human skeletal muscles at different time points after death were collected, and the relationship between them and PMI was analyzed by heat map and cluster analysis. RESULTS: The protein peak of rat skeletal muscle changed with PMI. The result of PCA combined with OPLS discriminant analysis showed statistical significance in groups with different time points (P<0.05) except 6 d, 7 d and 8 d after death. By Fisher discriminant analysis, the accuracy of internal cross-validation was 71.4% and the accuracy of external validation was 66.7%. The BP neural network model classification and preliminary estimation results showed the accuracy of internal cross-validation was 98.2%, and the accuracy of external validation was 95.8%. There was a significant difference in protein expression between 4 d and 25 h after death by the cluster analysis of the human skeletal muscle samples. CONCLUSIONS: The protein chip technology can quickly, accurately and repeatedly obtain water-soluble protein expression profiles in rats' and human skeletal muscles with the relative molecular mass of 14 000-230 000 at different time points postmortem. The establishment of multiple PMI estimation models based on multivariate analysis can provide a new idea and method for PMI estimation.


Subject(s)
Postmortem Changes , Protein Array Analysis , Animals , Humans , Rats , Multivariate Analysis , Technology
4.
Fa Yi Xue Za Zhi ; 39(2): 193-199, 2023 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-37277383

ABSTRACT

Talent is one of the basic and strategic supports for building a modern socialist country in all aspects. Since the 1980s, the establishment of forensic medicine major and the cultivation of innovative talents in forensic medicine have become hot topics in higher education in forensic medicine. Over the past 43 years, the forensic medicine team of Shanxi Medical University has adhered to the joint education of public security and colleges, and made collaborative innovation, forming a training mode of "One Combination, Two Highlights, Three Combinations, Four in One" for innovative talents in forensic medicine. It has carried out "5+3/X" integrated reform, and formed a relatively complete talent training innovation mode and management system in teaching, scientific research, identification, major, discipline, team, platform and cultural construction. It has made a historic contribution to China's higher forensic education, accumulated valuable experience for the construction of first-class major and first-class discipline of forensic medicine, and provided strong support for the construction of the national new forensic talent training system. The popularization of this training mode is conducive to the rapid and sustainable development of forensic science, and provides more excellent forensic talents for national building, regional social development and the discipline construction of forensic science.


Subject(s)
Forensic Medicine , Humans , Forensic Medicine/education , Aptitude
5.
Forensic Sci Int Genet ; 66: 102904, 2023 09.
Article in English | MEDLINE | ID: mdl-37307769

ABSTRACT

The microbial communities may undergo a meaningful successional change during the progress of decay and decomposition that could aid in determining the post-mortem interval (PMI). However, there are still challenges to applying microbiome-based evidence in law enforcement practice. In this study, we attempted to investigate the principles governing microbial community succession during decomposition of rat and human corpse, and explore their potential use for PMI of human cadavers. A controlled experiment was conducted to characterize temporal changes in microbial communities associated with rat corpses as they decomposed for 30 days. Obvious differences of microbial community structures were observed among different stages of decomposition, especially between decomposition of 0-7d and 9-30d. Thus, a two-layer model for PMI prediction was developed based on the succession of bacteria by combining classification and regression models using machine learning algorithms. Our results achieved 90.48% accuracy for discriminating groups of PMI 0-7d and 9-30d, and yielded a mean absolute error of 0.580d within 7d decomposition and 3.165d within 9-30d decomposition. Furthermore, samples from human cadavers were collected to gain the common succession of microbial community between rats and humans. Based on the 44 shared genera of rats and humans, a two-layer model of PMI was rebuilt to be applied for PMI prediction of human cadavers. Accurate estimates indicated a reproducible succession of gut microbes across rats and humans. Together these results suggest that microbial succession was predictable and can be developed into a forensic tool for estimating PMI.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Rats , Animals , Postmortem Changes , Cadaver , Machine Learning
6.
Anal Bioanal Chem ; 415(12): 2291-2305, 2023 May.
Article in English | MEDLINE | ID: mdl-36933055

ABSTRACT

The determination of sudden cardiac death (SCD) is one of the difficult tasks in the forensic practice, especially in the absence of specific morphological changes in the autopsies and histological investigations. In this study, we combined the metabolic characteristics from corpse specimens of cardiac blood and cardiac muscle to predict SCD. Firstly, ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS)-based untargeted metabolomics was applied to obtain the metabolomic profiles of the specimens, and 18 and 16 differential metabolites were identified in the cardiac blood and cardiac muscle from the corpses of those who died of SCD, respectively. Several possible metabolic pathways were proposed to explain these metabolic alterations, including the metabolism of energy, amino acids, and lipids. Then, we validated the capability of these combinations of differential metabolites to distinguish between SCD and non-SCD through multiple machine learning algorithms. The results showed that stacking model integrated differential metabolites featured from the specimens showed the best performance with 92.31% accuracy, 93.08% precision, 92.31% recall, 91.96% F1 score, and 0.92 AUC. Our results revealed that the SCD metabolic signature identified by metabolomics and ensemble learning in cardiac blood and cardiac muscle has potential in SCD post-mortem diagnosis and metabolic mechanism investigations.


Subject(s)
Metabolome , Metabolomics , Humans , Metabolomics/methods , Mass Spectrometry/methods , Chromatography, High Pressure Liquid , Death, Sudden, Cardiac
7.
Int J Legal Med ; 137(1): 169-180, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35348878

ABSTRACT

Acute myocardial ischemia (AMI) remains the leading cause of death worldwide, and the post-mortem diagnosis of AMI represents a current challenge for both clinical and forensic pathologists. In the present study, the untargeted metabolomics based on ultra-performance liquid chromatography combined with high-resolution mass spectrometry was applied to analyze serum metabolic signatures from AMI in a rat model (n = 10 per group). A total of 28 endogenous metabolites in serum were significantly altered in AMI group relative to control and sham groups. A set of machine learning algorithms, namely gradient tree boosting (GTB), support vector machine (SVM), random forest (RF), logistic regression (LR), and multilayer perceptron (MLP) models, was used to screen the more valuable metabolites from 28 metabolites to optimize the biomarker panel. The results showed that classification accuracy and performance of MLP model were better than other algorithms when the metabolites consisting of L-threonic acid, N-acetyl-L-cysteine, CMPF, glycocholic acid, L-tyrosine, cholic acid, and glycoursodeoxycholic acid. Finally, 17 blood samples from autopsy cases were applied to validate the classification model's value in human samples. The MLP model constructed based on rat dataset achieved accuracy of 88.23%, and ROC of 0.89 for predicting AMI type II in autopsy cases of sudden cardiac death. The results demonstrated that MLP model based on 7 molecular biomarkers had a good diagnostic performance for both AMI rats and autopsy-based blood samples. Thus, the combination of metabolomics and machine learning algorithms provides a novel strategy for AMI diagnosis.


Subject(s)
Algorithms , Myocardial Ischemia , Humans , Rats , Animals , Machine Learning , Myocardial Ischemia/diagnosis , Metabolomics , Biomarkers , Support Vector Machine
8.
Int J Legal Med ; 137(1): 237-249, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35661238

ABSTRACT

Determining postmortem interval (PMI) is one of the most challenging and essential endeavors in forensic science. Developments in PMI estimation can take advantage of machine learning techniques. Currently, applying an algorithm to obtain information on multiple organs and conducting joint analysis to accurately estimate PMI are still in the early stages. This study aimed to establish a multi-organ stacking model that estimates PMI by analyzing differential compounds of four organs in rats. In a total of 140 rats, skeletal muscle, liver, lung, and kidney tissue samples were collected at each time point after death. Ultra-performance liquid chromatography coupled with high-resolution mass spectrometry was used to determine the compound profiles of the samples. The original data were preprocessed using multivariate statistical analysis to determine discriminant compounds. In addition, three interrelated and increasingly complex patterns (single organ optimal model, single organ stacking model, multi-organ stacking model) were established to estimate PMI. The accuracy and generalized area under the receiver operating characteristic curve of the multi-organ stacking model were the highest at 93% and 0.96, respectively. Only 1 of the 14 external validation samples was misclassified by the multi-organ stacking model. The results demonstrate that the application of the multi-organ combination to the stacking algorithm is a potential forensic tool for the accurate estimation of PMI.


Subject(s)
Metabolomics , Postmortem Changes , Rats , Animals , Rats, Sprague-Dawley , Autopsy , Metabolomics/methods , Machine Learning
9.
Fa Yi Xue Za Zhi ; 38(4): 468-472, 2022 Aug 25.
Article in English, Chinese | MEDLINE | ID: mdl-36426689

ABSTRACT

OBJECTIVES: To investigate the effects of injury time, postmortem interval (PMI) and postmortem storage temperature on mRNA expression of glycoprotein non-metastatic melanoma protein B (Gpnmb), and to establish a linear regression model between Gpnmb mRNA expression and injury time, to provide aimed at providing potential indexes for injury time estimation. METHODS: Test group SD rats were anesthetized and subjected to blunt contusion and randomly divided into 0 h, 4 h, 8 h, 12 h, 16 h, 20 h and 24 h groups after injury, with 18 rats in each group. After cervical dislocation, 6 rats in each group were collected and stored at 0 ℃, 16 ℃ and 26 ℃, respectively. The muscle tissue samples of quadriceps femoris injury were collected at 0 h, 12 h and 24 h postmortem at the same temperature. The grouping method and treatment method of the rats in the validation group were the same as above. The expression of Gpnmb mRNA in rat skeletal muscle was detected by RT-qPCR. The Pearson correlation coefficient was used to evaluate the correlation between Gpnmb mRNA expression and injury time, PMI, and postmortem storage temperature. SPSS 25.0 software was used to construct a linear regression model, and the validation group data was used for the back-substitution test. RESULTS: The expression of Gpnmb mRNA continued to increase with the prolongation of injury time, and the expression level was highly correlated with injury time (P<0.05), but had little correlation with PMI and postmortem storage temperature (P>0.05). The linear regression equation between injury time (y) and Gpnmb mRNA relative expression (x) was y=0.611 x+4.489. The back-substitution test proved that the prediction of the model was accurate. CONCLUSIONS: The expression of Gpnmb mRNA is almost not affected by the PMI and postmortem storage temperature, but is mainly related to the time of injury. Therefore, a linear regression model can be established to infer the time of injury.


Subject(s)
Melanoma , Postmortem Changes , Animals , Rats , Glycoproteins , Linear Models , Membrane Glycoproteins/genetics , Rats, Sprague-Dawley , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors
10.
Fa Yi Xue Za Zhi ; 38(2): 150-157, 2022 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-35899498

ABSTRACT

Medical disputes are one of the common problems concerned by the whole world. All countries and regions have established their own medical dispute resolution mechanisms, in accordance with their own national conditions. Medical dispute identification opinions, as one of the important bases for identifying the responsibilities of both doctors and patients, play a pivotal role in the process of dispute settlement. A reasonable medical dispute resolution mechanism and standardized medical dispute identification model can help resolve disputes flexibly and reduce the conflict between doctors and patients. This paper briefly compares the medical dispute resolution mechanism and identification mode of China and several other representative countries (the United States, Britain, France, Germany, Italy, Japan, etc.), and discusses their respective characteristics and shortcomings, to bring some enlightenment to the medical dispute resolution and identification in our country.


Subject(s)
Dissent and Disputes , Social Behavior , China , Humans
11.
Fa Yi Xue Za Zhi ; 38(1): 14-19, 2022 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-35725699

ABSTRACT

Diatom test is the main laboratory test method in the diagnosis of drowning in forensic medicine. It plays an important role in differentiating the antemortem drowning from the postmortem drowning and inferring drowning site. Artificial intelligence (AI) automatic diatom test is a technological innovation in forensic drowning diagnosis which is based on morphological characteristics of diatom, the application of AI algorithm to automatic identification and classification of diatom in tissues and organs. This paper discusses the morphological diatom test methods and reviews the research progress of automatic diatom recognition and classification involving AI algorithms. AI deep learning algorithm can assist diatom testing to obtain objective, accurate, and efficient qualitative and quantitative analysis results, which is expected to become a new direction of diatom testing research in the drowning of forensic medicine in the future.


Subject(s)
Diatoms , Drowning , Artificial Intelligence , Autopsy , Drowning/diagnosis , Humans , Lung
12.
Fa Yi Xue Za Zhi ; 38(1): 31-39, 2022 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-35725701

ABSTRACT

OBJECTIVES: To select four algorithms with relatively balanced complexity and accuracy among deep learning image classification algorithms for automatic diatom recognition, and to explore the most suitable classification algorithm for diatom recognition to provide data reference for automatic diatom testing research in forensic medicine. METHODS: The "diatom" and "background" small sample size data set (20 000 images) of digestive fluid smear of corpse lung tissue in water were built to train, validate and test four convolutional neural network (CNN) models, including VGG16, ResNet50, InceptionV3 and Inception-ResNet-V2. The receiver operating characteristic curve (ROC) of subjects and confusion matrixes were drawn, recall rate, precision rate, specificity, accuracy rate and F1 score were calculated, and the performance of each model was systematically evaluated. RESULTS: The InceptionV3 model achieved much better results than the other three models with a balanced recall rate of 89.80%, a precision rate of 92.58%. The VGG16 and Inception-ResNet-V2 had similar diatom recognition performance. Although the performance of diatom recall and precision detection could not be balanced, the recognition ability was acceptable. ResNet50 had the lowest diatom recognition performance, with a recall rate of 55.35%. In terms of feature extraction, the four models all extracted the features of diatom and background and mainly focused on diatom region as the main identification basis. CONCLUSIONS: Including the Inception-dependent model, which has stronger directivity and targeting in feature extraction of diatom. The InceptionV3 achieved the best performance on diatom identification and feature extraction compared to the other three models. The InceptionV3 is more suitable for daily forensic diatom examination.


Subject(s)
Deep Learning , Diatoms , Algorithms , Humans , Neural Networks, Computer , ROC Curve
13.
Front Med (Lausanne) ; 9: 1083474, 2022.
Article in English | MEDLINE | ID: mdl-36703889

ABSTRACT

Background: The estimation of post-mortem interval (PMI) is one of the most important problems in forensic pathology all the time. Although many classical methods can be used to estimate time since death, accurate and rapid estimation of PMI is still a difficult task in forensic practice, so the estimation of PMI requires a faster, more accurate, and more convenient method. Materials and methods: In this study, an experimental method, lab-on-chip, is used to analyze the characterizations of polypeptide fragments of the lung, liver, kidney, and skeletal muscle of rats at defined time points after death (0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, and 30 days). Then, machine learning algorithms (base model: LR, SVM, RF, GBDT, and MLPC; ensemble model: stacking, soft voting, and soft-weighted voting) are applied to predict PMI with single organ. Multi-organ fusion strategy is designed to predict PMI based on multiple organs. Then, the ensemble pruning algorithm determines the best combination of multi-organ. Results: The kidney is the best single organ for predicting the time of death, and its internal and external accuracy is 0.808 and 0.714, respectively. Multi-organ fusion strategy dramatically improves the performance of PMI estimation, and its internal and external accuracy is 0.962 and 0.893, respectively. Finally, the best organ combination determined by the ensemble pruning algorithm is all organs, such as lung, liver, kidney, and skeletal muscle. Conclusion: Lab-on-chip is feasible to detect polypeptide fragments and multi-organ fusion is more accurate than single organ for PMI estimation.

14.
Int J Legal Med ; 136(1): 149-158, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34515836

ABSTRACT

The study aimed to explore the neutrophil's spatial distributions used to estimate the histological age of contused skeletal muscle, and assessed the accuracy of various indicators, such as the proportion of neutrophils, "neutrophil mean distance," and distribution of neutrophils in areas of "contiguous contour lines." Fifty-five Sprague-Dawley rats were divided randomly into a control group and contusion groups at 1, 1.5, 2, 3, 4, and 6 h, as well as 1, 3, 5, and 15 days, post-injury (n = 5 per group). Nuclei and neutrophils were detected by hematoxylin and eosin (HE) staining and immunohistochemical (IHC) staining. At 0-24 h after injury, the distribution of neutrophils at distances of 100, 200, 300, 400, 500, and 600 µm from adjacent blood vessels was determined, and the best samples were screened to estimate wound age. To estimate wound age as accurately as possible, Fisher discriminant analysis (FDA) of the proportion of neutrophils, neutrophil mean distance, and distribution of neutrophils was performed, and 100.0% and 95.0% of the original and cross-validated cases were correctly classified, respectively. The spatial distribution of neutrophils at different distances from adjacent blood vessels showed a strong correlation with the histological age of contusion skeletal muscle, and the combination of the proportion of neutrophils, neutrophil mean distance, and distribution of neutrophils could be used to accurately estimate wound age.


Subject(s)
Contusions , Neutrophils , Animals , Rats , Contusions/pathology , Muscle, Skeletal/pathology , Rats, Sprague-Dawley , Time Factors , Forensic Sciences
15.
Biosci Rep ; 41(1)2021 01 29.
Article in English | MEDLINE | ID: mdl-33398324

ABSTRACT

Muscle trauma frequently occurs in daily life. However, the molecular mechanisms of muscle healing, which partly depend on the extent of the damage, are not well understood. The present study aimed to investigate gene expression profiles following mild and severe muscle contusion, and to provide more information about the molecular mechanisms underlying the repair process. A total of 33 rats were divided randomly into control (n=3), mild contusion (n=15), and severe contusion (n=15) groups; the contusion groups were further divided into five subgroups (1, 3, 24, 48, and 168 h post-injury; n=3 per subgroup). A total of 2844 and 2298 differentially expressed genes (DEGs) were identified using microarray analyses in the mild and severe contusions, respectively. From the analysis of the 1620 coexpressed genes in mildly and severely contused muscle, we discovered that the gene profiles in functional modules and temporal clusters were similar between the mild and severe contusion groups; moreover, the genes showed time-dependent patterns of expression, which allowed us to identify useful markers of wound age. The functional analyses of genes in the functional modules and temporal clusters were performed, and the hub genes in each module-cluster pair were identified. Interestingly, we found that genes down-regulated at 24-48 h were largely associated with metabolic processes, especially of the oxidative phosphorylation (OXPHOS), which has been rarely reported. These results improve our understanding of the molecular mechanisms underlying muscle repair, and provide a basis for further studies of wound age estimation.


Subject(s)
Computational Biology/methods , Contusions/pathology , Muscle, Skeletal/pathology , Oligonucleotide Array Sequence Analysis/methods , Animals , Cluster Analysis , Contusions/genetics , Down-Regulation , Gene Expression Profiling , Male , Muscle, Skeletal/metabolism , Oxidative Phosphorylation , Protein Interaction Maps , Rats , Rats, Sprague-Dawley
16.
Fa Yi Xue Za Zhi ; 37(5): 621-626, 2021 Oct 25.
Article in English, Chinese | MEDLINE | ID: mdl-35187912

ABSTRACT

OBJECTIVES: To explore the correlation between intestinal microbiota and postmortem interval(PMI) in rats by using 16S rRNA high-throughput sequencing technology. METHODS: Rats were killed by anesthesia and placed at 16 ℃, and DNA was extracted in caecum at 14 time points of 0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27 and 30 d after death. The 16S rRNA high-throughput sequencing technology was used to detect intestinal microbiota in rat cecal contents, and the results were used to analyze the rat intestinal microbiota diversity and differences. RESULTS: The total number of intestinal microbial communities did not change significantly within 30 days after death, but the diversity showed an upward trend. A total of 119 bacterial communities were significantly changed at 13 time points after death. The models for PMI estimation were established by using partial least squares (PLS) regression at all time points, before 9 days and after 12 days, reaching an R2 of 0.795, 0.767 and 0.445, respectively; and the root mean square errors (RMSEs) were 6.57, 1.96 and 5.37 d, respectively. CONCLUSIONS: Using 16S rRNA high-throughput sequencing technology, the composition and structure of intestinal microbiota changed significantly within 30 d after death. In addition, the established PLS regression model suggested that the PMI was highly correlated with intestinal microbiota composition, showing a certain time series change.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Gastrointestinal Microbiome/genetics , High-Throughput Nucleotide Sequencing , Microbiota/genetics , Postmortem Changes , RNA, Ribosomal, 16S/genetics , Rats , Technology
17.
PeerJ ; 9: e12709, 2021.
Article in English | MEDLINE | ID: mdl-35036173

ABSTRACT

Wound age estimation is still one of the most important and significant challenges in forensic practice. The extent of wound damage greatly affects the accuracy and reliability of wound age estimation, so it is important to find effective biomarkers to help diagnose wound degree and wound age. In the present study, the gene expression profiles of both mild and severe injuries in 33 rats were assayed at 0, 1, 3, 24, 48, and 168 hours using the Affymetrix microarray system to provide biomarkers for the evaluation of wound age and the extent of the wound. After obtaining thousands of differentially expressed genes, a principal component analysis, the least absolute shrinkage and selection operator, and a time-series analysis were used to select the most predictive prognostic genes. Finally, 15 genes were screened for evaluating the extent of wound damage, and the top 60 genes were also screened for wound age estimation in mild and severe injury. Selected indicators showed good diagnostic performance for identifying the extent of the wound and wound age in a Fisher discriminant analysis. A function analysis showed that the candidate genes were mainly related to cell proliferation and the inflammatory response, primarily IL-17 and the Hematopoietic cell lineage signalling pathway. The results revealed that these genes play an essential role in wound-healing and yield helpful and valuable potential biomarkers for further targeted studies.

18.
Nat Neurosci ; 24(1): 61-73, 2021 01.
Article in English | MEDLINE | ID: mdl-33257875

ABSTRACT

Normal aging is accompanied by escalating systemic inflammation. Yet the potential impact of immune homeostasis on neurogenesis and cognitive decline during brain aging have not been previously addressed. Here we report that natural killer (NK) cells of the innate immune system reside in the dentate gyrus neurogenic niche of aged brains in humans and mice. In situ expansion of these cells contributes to their abundance, which dramatically exceeds that of other immune subsets. Neuroblasts within the aged dentate gyrus display a senescence-associated secretory phenotype and reinforce NK cell activities and surveillance functions, which result in NK cell elimination of aged neuroblasts. Genetic or antibody-mediated depletion of NK cells leads to sustained improvements in neurogenesis and cognitive function during normal aging. These results demonstrate that NK cell accumulation in the aging brain impairs neurogenesis, which may serve as a therapeutic target to improve cognition in the aged population.


Subject(s)
Cellular Senescence , Cognitive Dysfunction/physiopathology , Killer Cells, Natural , Neural Stem Cells , Neurogenesis , Adult , Aged , Aging , Animals , Cytotoxicity, Immunologic , Dentate Gyrus/cytology , Dentate Gyrus/growth & development , Female , Humans , Immunity, Innate , Interleukin-27/metabolism , Male , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis
19.
Int J Legal Med ; 134(6): 2177-2186, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32909067

ABSTRACT

Wound age estimation is a complex, multifactorial issue. It is considered to have great practical significance that combining multi-biomarkers and multi-methods for injury time estimation. We optimized our earlier "up, no change, or down" model by adding data on the expression levels of mRNAs encoding ABHD2, MAD2L2, and ARID5A, and we converted the relative quantitative expression levels of seven genes into a vector rather than a color model. We used Python to derive the cosine similarity (CS) between a test set and the vector matrix; the highest similarity most accurately reflected the injury time. For the optimized model, the internal and external verifications were approximately 0.71 and 0.66, respectively. The good double-blinded results indicated that the model was stable and reliable. In summary, we used a vector matrix and cosine similarities derived by Python to mine the levels of genes expressed in contused skeletal muscle. We are the first to combine several biomarkers and methods for wound age estimation.


Subject(s)
Contusions/metabolism , DNA-Binding Proteins/genetics , Hydrolases/genetics , Mad2 Proteins/genetics , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Animals , Down-Regulation , Gene Expression Regulation , Male , Models, Animal , RNA, Messenger , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Time Factors , Up-Regulation
20.
Int J Legal Med ; 134(1): 273-282, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30631906

ABSTRACT

Although many time-dependent parameters involved in wound healing have been exhaustively investigated, establishing an objective and reliable means for estimating wound age remains a challenge. In this study, 78 Sprague-Dawley rats were divided randomly into a control group and contusion groups at 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h post-injury (n = 6 per group). The expression of 35 wound healing-related genes was explored in contused skeletal muscle by real-time polymerase chain reaction. Differences between the groups were assessed by partial least squares discriminant analysis (PLS-DA). The results show that the samples were classified into three groups by wound age (4-12, 16-24, and 28-48 h). A Fisher discriminant analysis model of 14 selected genes was constructed, and 94.9% cross-validated grouped cases were correctly classified. A PLS regression analysis using 14 genes showed reasonable internal predictive validity, with a root mean squared error of cross-validation of approximately 8 h. To examine whether the prediction models were capable of analyzing new (ungrouped) cases, an external validation was carried out using the expression data from an additional 30 rats. Approximately 76.7% of ungrouped cases were correctly classified, which was a lower proportion than that for cross-validation. Similarly, the prediction results of the PLS model showed lower relatively external predictive validity (root mean squared error of prediction = 11 h) than internal predictive validity. Although the prediction results were less accurate than expected, the gene expression modeling and multivariate analyses showed great potential for estimating injury time. These multivariate methods may be valuable when devising future wound time estimation strategies.


Subject(s)
Contusions/diagnosis , Gene Expression , Muscle, Skeletal/injuries , Wound Healing/genetics , Animals , Discriminant Analysis , Forensic Pathology , Least-Squares Analysis , Male , Models, Animal , Models, Statistical , Multivariate Analysis , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...